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Introduction 

Healthy kidneys are vital organs in the body. The kidneys filter toxins, such as urea and 

creatinine, out of the bloodstream as well as balance the pH, and water level in the 

bloodstream. They also regulate blood pressure. Mass transfer in the kidneys occurs through 

the one million nephrons located in each kidney. As shown in Figure 1, unfiltered blood enters 

the nephrons and reaches the glomerulus where the toxins are filtered into the tubule and out of 

the body through the urine. Filtered blood returns to the bloodstream. The entire content of 

circulatory system is typically filtered every 30 to 60 minutes in humans, depending on the 

subjects resting heart rate. (1) 

 

Figure 1: Kidney Anatomy (2) 

Kidney disease is the result of poor mass transfer in the nephrons. It is caused by a variety of 

maladies including poor diet, diabetes, and overuse of pain medications. Nearly 1 in 3 

Americans is at risk for the disease and 26 million Americans have it. Beyond a transplant, there 

is no cure for kidney disease and; as a result, it is the 9th leading cause of death in the United 

States. The most common treatment for kidney disease is dialysis. Nearly 500,000 Americans 

are currently on dialysis. And although popular, it is not a convenient therapy, requiring up to 8 

hour sessions 5 to 7 days a week. (3) 

There are two types of dialysis, peritoneal dialysis and hemodialysis. Peritoneal dialysis involves 

inserting a dialysate fluid directly into the body to capture toxins from the bloodstream for a set 

amount of time before the fluid is removed. Hemodialysis, which is much more common in the 

U.S., involves external mass transfer of toxins from the blood stream via a dialyzer. A dialyzer 

operates essentially as an artificial kidney as shown in Figure 2. Blood is pumped from the 

patient, through hollow fibers in the dialyzer. The hollow fibers are surrounded by a 

semipermeable membrane which allows for mass transfer of small molecules such as urea from 

the blood to the dialysate, which is pumped counter-currently across the outside of the blood 

containing tubes. Dialysis sessions are so time intensive because the entire blood volume of the 

patient must be flown through the dialyzer multiple times, until toxin levels are minimal. Dialysis 

must be performed nearly daily as toxins are continuously produced in the bloodstream, and 

their levels must be controlled to avoid potentially lethal effects. (4) 
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Figure 2: Simplified Dialyzer Flow Diagram (5) 

Problem Statement 

The objective of this work is to develop a full-fledged model of a dialyzer which can be used to 

for dialyzer design. A diagram of the full model is shown in Figure 3. Both blood and 

countercurrent dialysate flow and concentrations will be included in the model. The model needs 

to account for mass transfer in the z direction in the tube and both the z and radial directions in 

the membrane. Additionally, a macroscopic model of the dialyzer will look at mass transfer over 

the length of the dialyzer over time, in order to model the number of circulations through the 

dialyzer required to reduce urea levels in the blood stream. Urea will be used as the model 

analyte.  

 

Figure 3: Diagram of Dialyzer. The outer cylinder represents the membrane and its width (not to 

scale). The dialysate shown as the outer compartment (not drawn).  
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Methods 

To design the model, the problem can be broken down into multiple pieces. In case 1, the 

problem is simplified by considering only a cross section of the system of interest. By doing so, 

the variation in the length of the pipe is ignored. This case will focus on the dynamics of the bulk 

fluid within the blood vessel in the dialysate. To look at the bulk movement of urea from the 

blood vessel compartment to the dialysate, the model will assume the mass transfer equation,  

𝑁 = 𝑘(𝑐1,𝑖 −  𝑐1) 

where N is the flux across a vessel, c1,i is the concentration on one interface, and ci is the 

concentration at the other interface. The mass transfer coefficient “expects that the amount 

transferred is proportional to the concentration difference and the interfacial area…where the 

proportionality is summarized by k, called a mass transfer coefficient” (6).  

This equation is widely used, especially in chemical engineering, to experimentally fit a 

coefficient to this proportionality. The mass transfer equation has the advantage of ignoring the 

geometry of the vessel, simplifying the problem. While this equation is very similar to the 1-D 

diffusion equation that arises from Fick’s law in Cartesian coordinates, it is meant to be used 

more as a fitting parameter in practice. A more rigorous derivation will be demonstrated in later 

cases. 

In case 2, the dynamics within the membrane are considered. In cases 3 and 4, the entire 

system is considered. Specifically, case 3 deals with the dynamics of the blood vessel and 

considers how concentration changes along the z-direction. In case 4, the concentration profile 

within the membrane along the radial component and z-component is evaluated. In order to 

develop the governing equation, a mass balance was performed on a control volume. This 

theoretically provides a solution that explains the concentration gradient in the length, radial, 

and time dimensions. 

Results 

Case 1 

 

Figure 4: Shows the slice of the system. 

Since this case ignores the dynamics within the membrane, the membrane thickness is ignored 

in the diagram. The blood vessel is shown in red with volumetric flow rate Qa and uniform 

concentration Ca. The blood urea concentration is assumed to be constant at the inlet, Cain. The 

concentration at the slice changes only with time (no radial gradient). Similarly, the dialysate 
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volumetric flow rate is Qb, with uniform inlet concentration Cbin. Although the concentration 

should be zero, as the dialysate enters the dialyzer free of toxins, the term is carried for 

completeness. A mass balance results in the following system of equations. 

𝑉𝐴

𝑑𝐶𝐴

𝑑𝑡
= 𝑄𝐴(𝐶𝐴𝑖𝑛 − 𝐶𝐴) − 𝐾(𝐶𝐴 − 𝐶𝐵) 

𝑉𝐵

𝑑𝐶𝐵

𝑑𝑡
= 𝑄𝐵(𝐶𝐵𝑖𝑛 − 𝐶𝐵) + 𝐾(𝐶𝐴 − 𝐶𝐵) 

𝐶𝐴(0) = 𝐶𝐴𝑖𝑛        𝐶𝐵(0) = 𝐶𝐵𝑖𝑛 

Va and Vb refer to the volume of the blood vessel and the dialysate compartment respectively. 

The first term in both equations represent the flow in and out of the pipes while the k(Ca - Cb) 

term represents the bulk urea movement from the vessel to the dialysate (see discussion of 

mass transfer coefficient). In cases 3 and 4, the model will be expanded to include variations in 

the spatial dimensions as well. 

The system of equations can be solved analytically by turning the system of equations into a 

matrix equation (below) and is solved by constructing the sum of corresponding homogenous 

and particular solutions using the steady state solution. 

[

𝑑𝐶𝐴

𝑑𝑡
𝑑𝐶𝐵

𝑑𝑡

] = [
𝑉𝐴 + 𝐾     − 𝐾
−𝐾      𝑉𝐵 + 𝐾

] [
𝐶𝐴

𝐶𝐵
] + [

𝐶𝐴𝑖𝑛𝑄𝐴

𝐶𝐵𝑖𝑛𝑄𝐵
] 

𝑢(𝑡) =  𝑢𝐻(𝑡) + 𝑢𝑝 (𝑡) 

The homogeneous solution can be solved using eigenvalue analysis and finding the 

corresponding eigenvectors.  

[

𝑑𝐶𝐴

𝑑𝑡
𝑑𝐶𝐵

𝑑𝑡

] = [
𝑉𝐴 + 𝐾     − 𝐾
−𝐾      𝑉𝐵 + 𝐾

] [
𝐶𝐴

𝐶𝐵
] 

[
𝐶𝐴, 𝐻

𝐶𝐵, 𝐻
] = [

𝜂1,1

𝜂1,2
] 𝐴𝑒𝜆1𝑡 + [

𝜂2,1

𝜂2,2
] 𝐵𝑒𝜆2𝑡 

The steady state solution implies no time dependence in the equations which turn the time 

derivatives into the zero vector. The resulting set of linear equations can be solved using matrix 

inversions.  

[
0
0

] = [
𝑉𝐴 + 𝐾     − 𝐾
−𝐾      𝑉𝐵 + 𝐾

] [
𝐶𝐴

𝐶𝐵
] + [

𝐶𝐴𝑖𝑛𝑄𝐴

𝐶𝐵𝑖𝑛𝑄𝐵
] 

[
𝐶𝐴, 𝑃

𝐶𝐵, 𝑃
] = [

𝐶𝐴, 𝑆𝑆

𝐶𝐵, 𝑆𝑆
] 

The following equation shows the sum final solution once the constants were substituted in 

(Supplement). 
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[
𝐶𝐴, 𝐻

𝐶𝐵, 𝐻
]  = [

0.27
−0.29

] 𝑒−30.9𝑡 + [
0.043
0.040

] 𝑒−7.47𝑡 +  [
0.43
0.25

] 

 

Figure 5: Shows the exponential decay behavior of both compartments. Solid line represents 

the concentration in the blood vessel compartment, and the dotted line represents the 

concentration in the dialysate compartment. 

The concentration within both compartments reach some steady state value. At this point, the 

mass transfer is complete, and no more purification can be achieved. This point signals that the 

amount of urea entering the blood vessel equals to the sum of the amount of urea diffusing into 

the dialysate and out of the blood vessel. Since the steady state solution does not reach a 

desirable level of urea, the outlet blood will need to be passed back as the input, a practice 

commonly performed in dialysis treatment (4).  

Figure 5 shows the effect of the mass transfer coefficient on the concentration profiles in both 

compartments. A lower coefficient corresponds to less mass transfer across the membrane, 

resulting in more urea staying in the blood vessel. As a result, the lower coefficient leads to a 

significantly higher concentration, in the blood vessel, at steady state.  
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Figure 6: Shows the relationship between the number of passes and the blood vessel 

concentration.  

Figure 6 shows the number of passes the system requires to reach an acceptable level of urea 

in the blood vessel (0.05 mg/mL) (7). By lowering the driving force (lower k), mass transfer 

occurs less quickly, and the steady state mass balance occurs at a higher concentration as 

seen in Figure 5. This means each pass of the dialysis is not very effective, leading to a 

significantly higher number of passes needed.  

Furthermore, Figure 6 also demonstrates the primary obstacle in many purification systems. As 

the concentration of the fluid becomes lower and lower due to the separation, the driving force 

that pushes the substance of interest also lowers leading to less efficient purification with every 

pass. This can be seen in the exponential decay of the figure. 

 

Case 2 

 

 

Figure 7: This is a similar system to case 1, but the membrane is expanded to show the width 

of the membrane. The scale is exaggerated to display the membrane more clearly. 
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In the second case, the membrane dynamics are considered for the same system as case 1. 

Since the diffusion is only in the radial direction, the problem simplifies to a 1-D diffusion 

problem in cylindrical coordinates.  

𝜕𝐶𝑀

𝜕𝑡
= 𝐷

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) 

𝐼. 𝐶.   @ 𝑡 = 0,   𝐶𝑀(𝑟, 0) = 0 

𝐵. 𝐶.   @ 𝑟 = 𝑅1,   𝐶𝑀(𝑅1, 𝑡) = 𝐶𝐴(𝑡) 

𝐵. 𝐶.   @ 𝑟 = 𝑅2,   𝐶𝑀(𝑅2, 𝑡) = 𝐶𝐵(𝑡) 

The initial condition assumes that the membrane contains no urea anywhere in the membrane. 

The boundary conditions for the membrane were determined in case 1, as the boundary 

concentrations are simply the urea concentration in the blood vessel and dialysate as a function 

of time. While the differential equation is simple, the exponential equations of the boundaries 

make solving for the analytical solution very complicated. However, this problem can be solved 

simply using Matlab’s pdepe function.  

 

Figure 8: Matlab’s pdepe result of 1-D cylindrical coordinate diffusion. The result shows the 

expected exponential functions at the boundaries.  

The plot shows the exponential curves of the boundary conditions as specified above. Most of 

the nonlinear dynamics occur at the early transient time scale as both boundaries are rapidly 

changing in concentration. At steady state, the diffusion across the membrane occurs nearly 

linearly. However, this is not exactly the case due to the cylindrical coordinate system. This will 

be explored further in case 4.  
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Case 3 

 

Figure 9: The diagram shows the length of the tube as well as the diffusion across the 

membrane (width not drawn explicitly).  

 

In the final cases the concentration profile along the length of the dialyzer was explored. 

Performing a mass balance across a small length of the blood vessel produces the following 

equation: 

𝑉
𝑑𝐶

𝑑𝑡
= 𝑄𝐶|𝑧 − 𝑄𝐶|𝑧+𝛥𝑧 − (𝐴𝐽|𝑟=𝑅1

) 

Where V is the volume of the blood vessel, Q is the volumetric flow of blood, A is the surface 

area of the blood vessel, and J is the flux at the wall of the blood vessel. It is assumed that the 

concentration is constant in each slice of z within the blood vessel. In other words, there is no 

radial component of C within the blood vessel.  

 

The volume, volumetric flow rate, and area can be further broken down in terms of Δz: 

𝜋𝑅2∆𝑧
𝜕𝐶(𝑧, 𝑡)

𝜕𝑡
= 𝜋𝑅2𝑣𝑐(𝑧, 𝑡) −  𝜋𝑅2𝑣𝑐(𝑧 + ∆𝑧,  𝑡) −  2𝜋𝑅∆𝑧(−𝐷

𝜕𝐶

𝜕𝑟
) 

Here, v is the velocity of the blood. The velocity is assumed to be constant in the radial 
direction. This assumption is made to simplify the model (see discussion of the radial 
component in the Discussion section). Dividing by the volume, results in the following equation: 
 

  
𝑑𝐶

𝑑𝑡
= 𝑣

𝐶|𝑧−𝐶|𝑧+𝛥𝑧

𝛥𝑧
+ (

2𝐷

𝑅1
∗

𝑑𝐶

𝑑𝑟
|𝑟=𝑅1

) 

Which simplifies to: 
𝑑𝐶

𝑑𝑡
= 𝑣

−𝑑𝐶

𝑑𝑧
+ (

2𝐷

𝑅1
∗

𝑑𝐶

𝑑𝑟
|𝑟=𝑅1

) 

This governing equation is a first order hyperbolic partial differential equation. Unfortunately, this 

cannot be solved using Matlab’s pdepe since the function expects a second order, one-

dimensional differential equation. However, here it is important to note that we are interested in 

the steady-state behavior of our system, instead of startup flux through the membrane. We want 

to know how much of the urea is filtered out once the blood passes through the entirety of the 

membrane region at steady state. This will simplify the problem by since there is no longer any 

time-dependence,  
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𝑣
𝑑𝐶

𝑑𝑧
= (

2𝐷

𝑅1
∗

𝑑𝐶

𝑑𝑟
|𝑟=𝑅1

) 

The values for the bulk velocity of the blood and the radius of the blood vessel are taken from 

literature. The dialysate concentration is approximated to equal 0 across all z as the volumetric 

flow rate is high and it enters the dialyzer in a pure state.  

The flux at the wall of the blood vessel is influenced by the diffusion of urea across the 

membrane. Solving for steady-state diffusion in the membrane gives the following equation: 

0 = 𝐷
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) 

With boundary conditions C(R2)=0 and C(R1)=C0. The solution is of the form 
𝐶 = 𝐴𝑙𝑛(𝑟) + 𝐵 

The flux is then given by: 

 
𝑑𝐶

𝑑𝑟
=

𝐴

𝑟
; 𝐴 =

𝐶0

ln (
𝑅1
𝑅2

)
 

Plugging this back into our mass balance in the blood vessel, 

𝑑𝐶

𝑑𝑧
= 𝑀 ∗ 𝐶, where 𝑀 =

2𝐷

𝑣𝑅1
2ln (𝑅1/𝑅2)

 

 

A solution of this first order ode is 𝐶 = 𝐶0exp (−𝑀𝑧) and the graphs are displayed below. 

 
Figure 10: The concentration across the z-component of the blood vessel with different 

diffusivity constants. 
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As in case 1, changing the diffusion constant is the same as changing the mass transfer driving 

force. As the constant decreases, less urea is leaving the pipe (via the membrane), resulting in 

higher concentration at the blood vessel outlet. For cases where the diffusion constant is 

sufficiently large (D = 2000000, 200, 20 cm2/s), the model predicts that the separation is 

achieved in 1 pass (which is not realistic. See Discussion section). For low diffusion, the 

logarithmic behavior is less pronounced and can be approximated with a linear function (similar 

to the mass transfer coefficient model).  

 

Case 4 

 

 

 

Figure 11: Model for the diffusion across the membrane across the length of the blood vessel 

The concentration profile in the membrane across both the radial and z directions was also 

investigated. To do this, the profile along the inner wall was taken as the boundary condition for 

our diffusion equation at each z. The equation was then plotted along the radial direction. 

As stated before, the solution to the diffusion equation was of the form: 

  C = 𝐴𝑙𝑛(𝑟) + 𝐵 

𝐴 =
−𝐶(𝑟 = 𝑅1)

𝑙𝑛 (
𝑅2

𝑅1
)

 

  𝐵 =
𝐶(𝑟=𝑅1)

𝑙𝑛(
𝑅2
𝑅1

)
ln(𝑅2) 
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Figure 12: The concentration profile in the membrane in the radial and z-components with 

varying diffusivity constants 

This membrane profile explains why the concentration profile in the blood vessel dropped so 

quickly. Virtually all of the urea diffusion occurs in the beginning of the membrane because of 

the high diffusivity constant, which leaves a minimal amount of urea left in the bloodstream.  
We also constructed graphs for lower diffusivity constants, which show a more gradual diffusion 

along the membrane, and a slower decay in concentration of urea in the blood stream. 

  

Discussion 

Model Limitations 

There are multiple limitations to the models in cases 1 through 4. Beyond case 2, all cases were 

assumed to occur at steady state. Although this eventually will be true, we are neglecting start 

up behavior in the dialyzer. Additionally, we are assuming in every case that there is no change 

in volumetric flows in both the dialysate and blood flow. To make this assumption we are 

assuming a dilute concentration of urea in both flows. However, in true dialysis, both small 

molecule toxins and water are transferred through the membrane. Osmosis of water likely 

effects volumetric flows and this would impact mass transfer across the membrane. In addition, 

we neglected ultrafiltration as it would require inclusion of fluid flow equations affected by a 

pressure gradient across the membrane. If ultrafiltration were accounted for, faster mass 

transfer would be likely be observed as the pressure gradient would compound with the 

concentration gradient and provide additional driving force for the movement of urea across the 

membrane.  
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In cases 3 and 4 the results actually show that diffusion is not the main mode of transfer of urea 

across. As seen in Figure 12, only a low diffusion constant shows a reasonable concentration 

profile. This is because the model’s assumption of only diffusion-driven transfer does not hold 

well. In reality, the urea would travel across the membrane as a result of both diffusion and 

convective flow. For dialysis in this case, convective flow transfer dominates and exhibits a 

behavior similar to that obtained when using mass transfer analysis. The model does show (for 

lower diffusivity constants) that diffusion would provide another source of resistance for mass 

transfer. In essence, if diffusion was a significant driving force, then the urea movement across 

the membrane would be even slower. 

Together these assumptions account for the inaccuracy of the model, exhibited by the short 

time scale required to reach steady state in all of the cases when literature diffusion constants 

are used. 

However, case 1 does not suffer from this problem as significantly because of how the mass 

transfer coefficient is defined. By simply lumping all of different driving forces together into one 

simple linear model, the model sacrifices the details of these driving forces for simplicity. The 

constant can be measured easily by simply determining the concentration of both 

compartments. The result is a less-detailed but more accurate model. The simplicity 

necessitates the need for a more complicated model if details such as the concentration 

gradient with respect to spatial dimensions are required. This was the motivation for cases 3 

and 4. 

Nevertheless, the presented models are useful in determining various design parameters. 

Varying parameters such as the mass transfer coefficient (case 1) and diffusion constant (cases 

3 and 4) allow for in silico approximation for various membrane designs and even overall 

dialysis design. For instance, different membrane materials will strongly influence the diffusion 

across the membrane.  This will change the steady state concentration and the total number of 

passes needed. These experiments would be tedious to run without such a model. Other factors 

that affect the diffusion include the porosity of the membrane and thickness of the membrane 

(cases 3 and 4). The volumetric flow rates of both compartments are also another important 

performance parameter. The higher the flow rate, the slower the concentration will change in 

both compartments (case 1). The studied models allow the designer to explore various 

parameters cheaply and quickly. 

Next steps 

While this study has proven useful in modeling dialysis, a few key components are missing to 

model the reality of the physical system especially when using equations that are determined 

from first principles like in cases 3 and 4. First, diffusion in the radial direction within the blood 

vessel was ignored because the diffusion should only significantly occur at the boundary due to 

blood flow. However, the radial dimension should be included to illustrate that velocity profile 

within the pipe is not truly uniform. For instance, in these conditions, laminar flow can be 

assumed due to the small diameter of the fibers, and a parabolic velocity profile can be fitted 

with the following equation:  

𝑉(𝑟) =  𝑉𝑚𝑎𝑥(1 − 𝑎𝑟2) 
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where Vmax is the maximum velocity (at the center of the tube), r is the radius of the pipe, and a 

is a tuning parameter. However, this detail was ignored for the derivation since including the 

radial dimension would have made the problem unsolvable by our available methods.  

In order to account for convection, the volumes of both compartments should also be allowed to 

vary spatially and temporally to account for the movement of water across the membrane. This 

will increase the resistance of mass transfer of the system.  

In addition, while the study only included a single tube, dialysis machines generally pack a 

bundle of tubes to increase the surface area to volume ratio. How the tubes are bundled will 

affect the overall diffusion. Hundreds of tubes can be simulated in silico. However, this problem 

poses additional challenges such as how to deal with the interface-interface diffusion between 

tubes and what the effects of the void space are on the diffusion (and whether the void space 

fluid will behave similarly to the bulk dialysate).  

Finally, future studies can also investigate the effects of having additional toxins in the blood 

stream and how the mixture affects diffusion.  

Conclusion 

Through our results from each of our cases we have developed a comprehensive system for 

preliminary dialyzer design. In case 1 we created a bulk model which is useful for determining 

the number of passes through the dialyzer required to reduce blood toxin levels. In cases 1 and 

2 we have demonstrated that we can use the bulk mass transfer model to observe membrane 

dynamics in spatial and temporal dimensions. We developed a model of diffusion across the 

semipermeable membrane over the length of the dialyzer in case 4. The combination of cases 1 

through 4 are useful for determining the permeability (diffusivity) of the dialyzer membrane, and 

thus the membrane material, necessary to achieve the desired clearance of toxins from the 

bloodstream.  
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Supplement 

Constants 

All constants found in Reference 8. 

Specification Value 
Blood Inlet Concentration 75

𝑚𝑔

𝑑𝑙
 

Blood Flow Rate 
400

𝑚𝑙

𝑚𝑖𝑛
 

Dialysate Flow Rate 
500

𝑚𝑙

𝑚𝑖𝑛
 

Membrane Diameter 40 𝜇𝑚𝑜𝑙 
Inner Diameter of Fibers 200 𝜇𝑚𝑜𝑙 

Length of Fibers 20 𝑐𝑚 
Number of Fibers 17,000 

Diffusivity of Urea in Cellulose Membrane 
2.7 ∗ 106

𝑐𝑚2

𝑠𝑒𝑐
 

Mass Transfer Area Coefficient of Urea in 
Cellulose Membrane 

700 
𝑚𝑙

𝑚𝑖𝑛
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MatLab Code 
Case 1 
%Setting up Constants 
r_tube = 100*1e-4; % cm 
L_tube = 20; % cm 
  
N = 17000; % Number of tubes 
  
Vol_a = N*(pi*r_tube^2)*L_tube; %cm^2 
Vol_b = 2000; % cm^2 
  
v_a = 400/60; % mL/s 
v_b = 500/60; % mL/s 
  
Ca0 = 75/100; %mg/mL 
Cb0 = 0; 
  
k_list = [1400/60, 700/60, 100/60, 30/60]; %mL/s 
  
for i = 1:size(k_list,2) 
    k = k_list(i); 
     
    %Solving for the Steady State solution 
    M = [-(k + v_a), k; k, -(k + v_b)]; 
    gen = [-Ca0*v_a; -v_b*Cb0]; 
  
    steadySol = linsolve(M, gen); 
  
    %Solving for the Homogeneous Solution 
    [eigenVector, eigenValue] = eig(M); 
    lambda1 = eigenValue(1,1); 
    lambda2 = eigenValue(2,2); 
  
    constants = linsolve(eigenVector, [Ca0; 0] - steadySol); 
  
    a = eigenVector(1,1)*constants(1); 
    b = eigenVector(2,1)*constants(1); 
    c = eigenVector(1,2)*constants(2); 
    d = eigenVector(2,2)*constants(2); 
  
    e = steadySol(1); 
    f = steadySol(2); 
  
    t = 0:0.01:1; 
  
    ca = a*exp(lambda1*t) + c*exp(lambda2*t) + e; 
    cb = b*exp(lambda2*t) + d*exp(lambda2*t) + f; 
  
    subplot(2,2,i) 
  
    plot(t,ca,'b') 
    hold on 
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    plot(t,cb,'--') 
    ylim([0,0.75]) 
  
    % subplot(2,1,1); 
    % plot(t,ca) 
    % title('Concentration in the Tube') 
    % ylabel('Time(mins)') 
    %  
    % subplot(2,1,2); 
    % plot(t,cb) 
    title(strcat('k = ', num2str(k*60), ' mL/min')) 
    ylabel('Concentration (mg/mL)') 
    xlabel('Time(mins)') 
  
    % ylim([0,0.3]) 
end 
  
legend('Blood Vessel', 'Dialysate') 
  
Case 1 (Number of Passes) 
n = 1; 
  
%Setting up Constants 
r_tube = 100*1e-4; % cm 
L_tube = 20; % cm 
  
N = 17000; % Number of tubes 
  
Vol_a = N*(pi*r_tube^2)*L_tube; %cm^2 
Vol_b = 2000; % cm^2 
  
k = 700/60; %mL/s 
  
v_a = 400/60; % mL/s 
v_b = 500/60; % mL/s 
  
Ca0 = 75/100; %mg/mL 
Cb0 = 0; 
  
k_list = [1400/60, 700/60, 100/60, 30/60]; 
  
for i = 1:size(k_list,2) 
    k = k_list(i) 
    n = 1; 
     
    Ca0 = 75/100; %mg/mL 
    Cb0 = 0; 
     
    value = 1; 
     
    concentration = zeros(1,1); 
    concentration(1) = Ca0;  
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    while value >= 0.05 
        %Solving for the Steady State solution 
        M = [-(k + v_a), k; k, -(k + v_b)]; 
        gen = [-Ca0*v_a; -v_b*Cb0]; 
  
        steadySol = linsolve(M, gen); 
  
        concentration(n + 1) = steadySol(1); 
  
        Ca0 = steadySol(1); 
        value = steadySol(1); 
         
        n = n + 1; 
    end 
  
    subplot(2,2,i) 
    bar(0:size(concentration,2) - 1, concentration) 
    title(strcat('k = ', num2str(k*60), ' mL/min')) 
    xlabel('Number of Passes') 
    ylabel('Inlet Urea Concen (mg/mL)') 
    xlim([-1,size(concentration,2)]) 
end 
 
Case 2 
 
m = 1; 
R1=.1; 
R2=.14; 
r = linspace(R1,R2,50); 
t = linspace(0,1); 

  
sol = pdepe(m,@projectpde,@projectic,@projectbc,r,t); 
u = sol(:,:,1); 

  
surf(r(1:end),t(2:end),u(2:end,1:end)) 
xlabel('Distance(cm)') 
ylabel('Time(s)') 

  
figure 
plot(t,u(:,1)) 

 
function [ c,f,s ] = projectpde( x,t,u,dudx ) 
D = 2.6E6; 
c = 1/D; 
f = dudx; 
s = 0; 
End 

 

function [ u0 ] = projectic( x ) 
u0=[]; 
for i=1:length(x) 
    if x(i) == 0 
        u0(i)=.7481+.4337; 
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    else 
        u0(i)=0; 
    end 
end 
end 

 

function [ pl,ql,pr,qr ] = projectbc( xl,ul,xr,ur,t ) 
pl=ul-(0.23*exp(-30.9*t)+.037*exp(-7.47*t)+.48); 
ql=0; 
pr=ur-(-.248*exp(-30.9*t)+.034*exp(-7.47*t)+.214); 
qr=0; 
end 

 
 
Cases 3 and 4 
clc 
clear all 
  
C0=.75; 
z=linspace(0,20,50); 
r=linspace(100E-4,140E-4); 
v = 400/60/pi/(100E-4)^2; 
R1 = 100E-4; 
R2 = 140E-4; 
D = [2E6,2E2,20,2]; 
for k=1:length(D) 
    C1(k,:)=C0*exp(-D(k)/R1/log(R2/R1)/v*z); 
end 
  
%plot(z,C1(5,:)) 
  
C=[]; 
  
for i = 1:size(C1,1) 
    for j = 1:size(C1,2) 
        C(j,:)=C1(i,j)./log(R2/R1).*log(R2./r); 
    end 
    subplot(2,2,i) 
    surf(r,z,C); 
    xlabel('R (mm)') 
    ylabel('Z (cm)') 
    zlabel('Urea Conc (mg/mL)') 
    title(strcat('D=', num2str((D(i))))) 
%     figure 
%     plot(z,C1) 
end 
  
%This is for the inner tube 
% for i=1:size(C1,1) 
%     subplot(2,2,i) 
%     plot(z,C1(i,:)) 
%     xlabel('z (mm)') 
%     ylabel('C (mg/mL)') 
%     title(strcat('D=', num2str((D(i))))) 
% end 




